Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.921
Filtrar
1.
Br J Nutr ; 131(9): 1540-1553, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38220222

RESUMO

Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.


Assuntos
Aminoácidos , Estudos Cross-Over , Proteínas na Dieta , Insulina , Período Pós-Prandial , Spirulina , Humanos , Masculino , Feminino , Idoso , Adulto Jovem , Aminoácidos/sangue , Proteínas na Dieta/administração & dosagem , Método Duplo-Cego , Insulina/sangue , Aminoácidos Essenciais/sangue , Aminoácidos Essenciais/administração & dosagem , Chlorella , Glicemia/metabolismo , Glicemia/análise , Adulto , Animais , Proteínas de Vegetais Comestíveis/administração & dosagem , Ervilhas/química , Proteínas de Ervilha/sangue , Leite/química , Proteínas do Leite/administração & dosagem , Fatores Etários
2.
Clin Chim Acta ; 552: 117632, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37940015

RESUMO

BACKGROUND: Measurement of serum amino acid (AA) concentrations is important in particular for the diagnosis and monitoring of inborn errors of AA metabolism. To ensure optimal clinical interpretation of AAs, reliable biological variation (BV) data are essential. In the present study, we derived BV data for 22 non-essential, conditionally essential, and essential AAs and assessed differences in BV of AAs related to sex. METHODS: Morning blood samples were drawn from 66 subjects (31 males and 35 females) once a week for 10 consecutive weeks. All samples were analyzed in duplicate using liquid chromatography-tandem mass-spectrometry. The data were assessed for outliers, trends, normality and variance homogeneity analysis prior to estimating within-subject (CVI) and between-subject (CVG) BV. RESULTS: CVI estimates ranged from 9.0 % for histidine (male) to 33.0 % for taurine (male). CVI estimates in males and females were significantly different for all AAs except for aspartic acid, citrulline and phenylalanine, in most cases higher in females than in males. Apart from for arginine, CVG estimates in males and females were similar. CONCLUSIONS: In this highly powered BV study, we provide updated BV estimates for 22 AAs and demonstrate that for most AAs, CVI estimates differ between males and females, with implications for interpretation and use of AAs in clinical practice.


Assuntos
Aminoácidos , Caracteres Sexuais , Feminino , Humanos , Masculino , Aminoácidos/sangue
3.
J Dairy Sci ; 106(12): 9733-9744, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641280

RESUMO

Choline requirements for dairy cattle are unknown. However, enhanced postruminal supply of choline may increase flux through the methionine cycle to spare Met for other functions such as protein synthesis and phosphatidylcholine (PC) synthesis during periods of negative nutrient balance (NNB). The objective was to investigate the effects of postruminal choline supply during a feed restriction-induced NNB on hepatic abundance and phosphorylation of mTOR (mechanistic target of rapamycin)-related signaling proteins, hepatic lipidome and plasma AA. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 DIM) were used in a replicated 5 × 5 Latin square design with 4 d of treatment and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements to induce NNB) with abomasal infusion of water (R0) or restriction plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected via biopsy on d 5 after infusions ended and used for Western blot analysis to measure proteins involved in mTOR signaling and untargeted lipidomics. Blood was collected on d 1 to 5 for plasma AA analysis. Statistical contrasts for protein and AA data were A0 versus R0 (CONT1), R0 versus the average of choline dose (CONT2) and tests of linear and quadratic effects of choline dose. Analysis of lipidomic data were performed with the web-based metabolomic processing tool MetaboAnalyst 5.0. Ratios of p-RPS6KB1:tRPS6KB1, p-EEF2:tEEF2, and p-EIF2:tEIF2 were greater with R (CONT1). Among those, supply of choline led to decreases in p-EEF2:tEEF2 (CONT2), p-EIF2:tEIF2 and tended to decrease p-EIF4BP1:tEIF4BP1. However, the effect was quadratic only for p-EEF2:tEEF2 and p-EIF2A:tEIF2A, reaching a nadir at 6.25 to 12.5 g/d choline ion. The ratio of p-RPS6KB1:tRPS6KB1 was not affected by supply of choline and was close to 2-fold greater at 25 g/d choline versus A0. Plasma Met concentration decreased with R (CONT1), but increased linearly with choline. Restriction also increased plasma 3-methyl-histidine (CONT1). The partial least squares discriminant analysis model of liver lipids distinguished treatments, with 13.4% of lipids being modified by treatment. One-way ANOVA identified 109 lipids with a false discovery rate ≤0.05. The largest group identified was PC species; all 35 detected decreased with R versus A0, but there were few differences among choline treatments. Overall, data suggested that dephosphorylation of EEF2 and EIF2A due to enhanced choline supply potentially helped maintain or increase protein synthesis during NNB. While activation of mTOR was not altered by choline, this idea of increased protein synthesis is partly supported by the increased circulating Met. However, enhanced postruminal choline had limited effects on the species of lipid produced during a period of NNB.


Assuntos
Aminoácidos , Colina , Fígado , Colina/sangue , Colina/metabolismo , Fígado/metabolismo , Feminino , Animais , Bovinos , Transdução de Sinais , Aminoácidos/sangue , Aminoácidos/metabolismo , Lactação , Período Periparto/sangue , Período Periparto/metabolismo , Privação de Alimentos , Biópsia/veterinária , Lipídeos/sangue , Proteínas , Rúmen/metabolismo
4.
BMC Geriatr ; 23(1): 427, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438737

RESUMO

BACKGROUND: The mass and strength of skeletal muscle decline with age, leading to its progressive dysfunction. High-throughput metabolite profiling provides the opportunity to reveal metabolic mechanisms and the identification of biomarkers. However, the role of amino acid metabolism in possible sarcopenia remains unclear. OBJECTIVES: The aim of this study included exploring variations in plasma amino acid concentrations in elderly individuals who have possible sarcopenia and further attempting to characterize a distinctive plasma amino acid profile through targeted metabolomics. METHODS: A cross-sectional, correlational research design was used for this study. Thirty possible-sarcopenic elderly participants were recruited (n = 30), as determined by the Asian Working Group for Sarcopenia (AWGS). Meanwhile, a reference group of non-sarcopenic (sex-, age-, and Appendicular Skeletal muscle Mass Index (ASMI)-matched non-sarcopenic controls, n = 36) individuals was included to compare the potential differences in metabolic fingerprint of the plasma amino acids associated with sarcopenia. Both groups were conducted the body composition analysis, physical function examination, and plasma amino acid-targeted metabolomics. The amino acids in plasma were measured using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS). Also, orthogonal partial least-squares-discriminant analysis (OPLS-DA) was applied to characterize the plasma amino acid profile. RESULTS: With respect to Handgrip Strength (HGS), the Five-Repetition Chair Stand Test (CS-5), the Six-Minute Walking Test (6MWT), the arm curl, the 30 s-Chair Stand Test (CST), the 2-Minute Step Test (2MST), the Timed Up-and-Go Test (TUGT), there was a decline in skeletal muscle function in the possible-sarcopenic group compared to the non-sarcopenic group. The mean plasma concentrations of arginine, asparagine, phenylalanine, serine, lysine, glutamine, and threonine were significantly lower in the possible sarcopenia group, whereas cirulline, proline, serine, and glutamic acid concentrations were higher. According to the multi-analysis, glutamine, serine, lysine, threonine, and proline were determined as the potential markers that indicated possible sarcopenia. CONCLUSIONS: The findings characterize significantly altered plasma amino acid metabolisms in the elderly with possible sarcopenia, which aids to screening people who are at a high risk of developing condition, and motivating to design new preventive and therapeutic approaches.


Assuntos
Aminoácidos , Sarcopenia , Idoso , Humanos , Aminoácidos/sangue , Cromatografia Líquida , Estudos Transversais , Glutamina , Força da Mão , Lisina , Sarcopenia/diagnóstico , Espectrometria de Massas em Tandem
5.
J Biol Chem ; 299(6): 104764, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121548

RESUMO

N-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genomic associations of four plasma N-acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2351 individuals from the Jackson Heart Study. We find that plasma levels of specific N-acyl amino acids are associated with cardiometabolic disease endpoints independent of free amino acid plasma levels and in patterns according to the amino acid head group. By integrating whole genome sequencing data with N-acyl amino acid levels, we identify that the genetic determinants of N-acyl amino acid levels also cluster according to the amino acid head group. Furthermore, we identify the CYP4F2 locus as a genetic determinant of plasma N-oleoyl-leucine and N-oleoyl-phenylalanine levels in human plasma. In experimental studies, we demonstrate that CYP4F2-mediated hydroxylation of N-oleoyl-leucine and N-oleoyl-phenylalanine results in metabolic diversification and production of many previously unknown lipid metabolites with varying characteristics of the fatty acid tail group, including several that structurally resemble fatty acid hydroxy fatty acids. These studies provide a structural framework for understanding the regulation and disease associations of N-acyl amino acids in humans and identify that the diversity of this lipid signaling family can be significantly expanded through CYP4F-mediated ω-hydroxylation.


Assuntos
Aminoácidos , Família 4 do Citocromo P450 , Ácidos Oleicos , Humanos , Aminoácidos/sangue , Aminoácidos/química , Doenças Cardiovasculares , Família 4 do Citocromo P450/metabolismo , Ácidos Graxos/metabolismo , Leucina , Fenilalanina , Ácidos Oleicos/sangue
6.
Amino Acids ; 55(5): 639-649, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36930326

RESUMO

To prevent the progression of type 2 diabetes mellitus (T2DM), early detection and intervention are important. Several studies have already shown that the serum adiponectin level could be useful for evaluating the future risk of T2DM. Recently, plasma free amino acid (PFAA) concentrations have also emerged as potential biomarkers that predict the future onset of T2DM. In this study, we aimed to further characterise PFAA profiles by elucidating the association with the serum high molecular weight (HMW) adiponectin level in this cross-sectional study. A total of 1000 Japanese subjects who underwent medical check-ups were enrolled, and their plasma concentrations of 21 amino acids and clinical parameters were measured. The subjects without T2DM were divided into quartiles (Q1-4) by serum HMW adiponectin level, and the association with between PFAA concentrations was analysed. Concentrations of glutamate, alanine, proline, tyrosine, histidine, methionine, lysine, branched-chain amino acids (BCAAs) and tryptophan varied significantly according to the adiponectin quartile. Furthermore, serum adiponectin levels showed significant inverse correlations with these amino acids. The change in the PFAA profile in the group with the lowest adiponectin concentrations (Q1) was similar to that of T2DM patients. Although both adiponectin levels and PFAA concentrations are known to be altered by the accumulation of visceral fat and insulin resistance, the levels of glutamate, BCAA, lysine and tryptophan remain significantly associated with adiponectin level after adjustment for age, body mass index and homeostasis model assessment of insulin resistance, showing the direct association between PFAA concentrations and the serum HMW adiponectin level. Registration number: University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) UMIN000029920, registered on Nov 13th 2017 (prospectively registered).


Assuntos
Adiponectina , Aminoácidos , Diabetes Mellitus Tipo 2 , Humanos , Adiponectina/sangue , Aminoácidos/sangue , Estudos Transversais , População do Leste Asiático , Glutamatos , Resistência à Insulina , Lisina , Peso Molecular , Triptofano
7.
Amino Acids ; 55(5): 651-663, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36881189

RESUMO

Adiposity is an important determinant of blood metabolites, but little is known about the variations of blood amino acids according to general and central adiposity status among Chinese population. This study included 187 females and 322 males who were cancer-free subjects randomly selected from two cohorts in Shanghai, China. Participants' plasma concentrations of amino acids were measured by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Linear regression models were used to examine the cross-sectional correlations between general and central adiposity and amino acid levels. A total of 35 amino acids in plasma were measured in this study. In females, alanine, aspartic acid and pyroglutamic acid were positively correlated with general adiposity. In males, glutamic acid, aspartic acid, valine and pyroglutamic acid showed positive correlations, and glutamine, serine and glycine showed negative correlations with both general and central adiposity; phenylalanine, isoleucine and leucine were positively correlated and N-phenylacetylglutamine was negatively correlated with general adiposity; asparagine was negatively correlated with central adiposity. In summary, general adiposity and central adiposity were correlated with the concentrations of specific plasma amino acids among cancer-free female and male adults in China. Adiposity-metabolite characteristics and relationships should be considered when studying blood biomarkers for adiposity-related health outcomes.


Assuntos
Adiposidade , Aminoácidos , Adulto , Feminino , Humanos , Masculino , Aminoácidos/sangue , China , População do Leste Asiático , Ácido Pirrolidonocarboxílico
8.
Curr HIV Res ; 20(3): 228-235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111751

RESUMO

BACKGROUND: Increasing the sensitivity and availability of liquid chromatography tandem mass spectrometry (LC-MS/MS) devices may provide advantages in terms of revealing the changes in metabolic pathways in HIV-positive patients and elucidating the physiopathology. INTRODUCTION: The aim of this study was to determine the difference in amino acid levels between HIV-positive patients and healthy individuals by using LC-MS / MS and investigate its relationship with HIV infection. MATERIAL AND METHODS: Concentrations of 36 different amino acids and their derivatives were measured and compared in venous plasma samples from 24 HIV-positive patients and 24 healthy individuals by using the LC-MS/MS method (Shimadzu North America, Columbia, MD, USA). RESULTS: HIV-positive subjects had significantly lower alanine, 1-methyl-L-histidine, valine, aspartate, cysteine, cystine, methionine, lysine, glutamine, imino acid, tyrosine, tryptophan, threonine, sarcosine, and argininosuccinic acid and significantly higher 3-methyl-L -histidine, asparagine, glutamate, and carnosine levels as compared to healthy controls. No significant differences were detected in other amino acids. CONCLUSION: The significant differences in amino acid profile between HIV-positive and healthy subjects may represent an auxiliary biomarker of cellular damage in asymptomatic HIV-positive patients that may be examined in more detail in further studies. It may also provide guidance for symptomatic cases in terms of the association between symptoms, clinical manifestations, and deficiency or excess of certain amino acids in the context of the complete metabolomics record of HIVpositive patients.


Assuntos
Aminoácidos , Infecções por HIV , Aminoácidos/sangue , Infecções por HIV/sangue , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-35228118

RESUMO

The pharmacological effects and therapeutic targets of naringin (NG) against osteoporosis (OP) is still unclear. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) based non-targeted metabonomics has been used to explore the differentiated metabolites and potential biological pathways of NG in the pathological process of OP. Using network pharmacology analysis, the key protein targets of NG against OP were also screened. By the metabonomics analysis, a total of 33 differentiated metabolites in serum were discovered, of which 21 were significantly regulated by NG treatment. These metabolites majorly associated with to amino acid metabolism,polyunsaturated fatty acid metabolism, pyruvate metabolism and glycerophospholipidmetabolism. Using the network pharmacology prediction analysis, NG was related to the expression changes of 13 important protein targets. It showed that high-throughput metabonomics strategy integrated with network pharmacology could insight into molecular mechanisms of natural products.


Assuntos
Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão/métodos , Flavanonas/administração & dosagem , Metabolômica/métodos , Osteoporose/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Aminoácidos/sangue , Animais , Glicerofosfolipídeos/sangue , Humanos , Masculino , Camundongos , Osteoporose/sangue
10.
Microbiol Spectr ; 10(1): e0105321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138162

RESUMO

It is well known that humans physiologically or pathologically respond to high altitude, with these responses accompanied by alterations in the gut microbiome. To investigate whether gut microbiota modulation can alleviate high-altitude-related diseases, we administered probiotics, prebiotics, and synbiotics in rat model with altitude-related cardiac impairment after hypobaric hypoxia challenge and observed that all three treatments alleviated cardiac hypertrophy as measured by heart weight-to-body weight ratio and gene expression levels of biomarkers in heart tissue. The disruption of gut microbiota induced by hypobaric hypoxia was also ameliorated, especially for microbes of Ruminococcaceae and Lachnospiraceae families. Metabolome revealed that hypobaric hypoxia significantly altered the plasma short-chain fatty acids (SCFAs), bile acids (BAs), amino acids, neurotransmitters, and free fatty acids, but not the overall fecal SCFAs and BAs. The treatments were able to restore homeostasis of plasma amino acids and neurotransmitters to a certain degree, but not for the other measured metabolites. This study paves the way to further investigate the underlying mechanisms of gut microbiome in high-altitude related diseases and opens opportunity to target gut microbiome for therapeutic purpose. IMPORTANCE Evidence suggests that gut microbiome changes upon hypobaric hypoxia exposure; however, it remains elusive whether this microbiome change is a merely derivational reflection of host physiological alteration, or it synergizes to exacerbate high-altitude diseases. We intervened gut microbiome in the rat model of prolonged hypobaric hypoxia challenge and found that the intervention could alleviate the symptoms of pathological cardiac hypertrophy, gut microbial dysbiosis, and metabolic disruptions of certain metabolites in gut and plasma induced by hypobaric hypoxia. Our study suggests that gut microbiome may be a causative factor for high-altitude-related pathogenesis and a target for therapeutic intervention.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/microbiologia , Microbioma Gastrointestinal , Altitude , Aminoácidos/sangue , Animais , Ácidos e Sais Biliares/sangue , Biomarcadores/sangue , Cardiomegalia/terapia , Ácidos Graxos Voláteis/sangue , Humanos , Masculino , Metaboloma , Neurotransmissores/sangue , Ratos , Ratos Wistar
11.
Mikrochim Acta ; 189(2): 82, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112159

RESUMO

As an effective analytical method, surface-enhanced Raman spectroscopy (SERS) is widely used in the detection of nucleic acids, amino acids, and other biomolecules. However, obtaining the SERS signal of nonaromatic amino acids is still a challenge. In this work, excess sodium borohydride was used as a reducing agent to prevent the surface of silver nanoparticles from being coated with AgO to enable amino acid molecules to reach the surface of silver nano-substrates. Calcium ions were used as aggregators for silver nano-substrates to successfully achieve the label-free and accurate fingerprint determination of various nonaromatic amino acids. Different types of amino acids were distinguished based on the changes in their peak intensity that were obtained using colorless and transparent organic dichloromethane (DCM) as the internal standard. A Raman signal for low-concentration amino acids in body fluids was detected, and the detection limit for tyrosine was 5 ng/mL. Moreover, the physical and chemical properties of peptides and the formation of peptide chains were further analyzed. The proposed method can potentially be applied to protein sequencing.


Assuntos
Aminoácidos/sangue , Líquidos Corporais/química , Peptídeos/sangue , Humanos , Óxidos/química , Compostos de Prata/química , Análise Espectral Raman
12.
PLoS One ; 17(1): e0261150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35015767

RESUMO

INTRODUCTION: Management of phenylketonuria (PKU) is mainly achieved through dietary control with limited intake of phenylalanine (Phe) from food, supplemented with low protein (LP) food and a mixture of free synthetic (FS) amino acids (AA) (FSAA). Casein glycomacropeptide (CGMP) is a natural peptide released in whey during cheese making by the action of the enzyme chymosin. Because CGMP in its pure form does not contain Phe, it is nutritionally suitable as a supplement in the diet for PKU when enriched with specific AAs. Lacprodan® CGMP-20 (= CGMP) used in this study contained only trace amounts of Phe due to minor presence of other proteins/peptides. OBJECTIVE: The aims were to address the following questions in a classical PKU mouse model: Study 1, off diet: Can pure CGMP or CGMP supplemented with Large Neutral Amino Acids (LNAA) as a supplement to normal diet significantly lower the content of Phe in the brain compared to a control group on normal diet, and does supplementation of selected LNAA results in significant lower brain Phe level?. Study 2, on diet: Does a combination of CGMP, essential (non-Phe) EAAs and LP diet, provide similar plasma and brain Phe levels, growth and behavioral skills as a formula which alone consist of FSAA, with a similar composition?. MATERIAL AND METHODS: 45 female mice homozygous for the Pahenu2 mutation were treated for 12 weeks in five different groups; G1(N-CGMP), fed on Normal (N) casein diet (75%) in combination with CGMP (25%); G2 (N-CGMP-LNAA), fed on Normal (N) casein diet (75%) in combination with CGMP (19,7%) and selected LNAA (5,3% Leu, Tyr and Trp); G3 (N), fed on normal casein diet (100%); G4 (CGMP-EAA-LP), fed on CGMP (70,4%) in combination with essential AA (19,6%) and LP diet; G5 (FSAA-LP), fed on FSAA (100%) and LP diet. The following parameters were measured during the treatment period: Plasma AA profiles including Phe and Tyr, growth, food and water intake and number of teeth cut. At the end of the treatment period, a body scan (fat and lean body mass) and a behavioral test (Barnes Maze) were performed. Finally, the brains were examined for content of Phe, Tyr, Trp, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and 5-hydroxyindole-acetic acid (5-HIAA), and the bone density and bone mineral content were determined by dual-energy x-ray absorptiometry. RESULTS: Study 1: Mice off diet supplemented with CGMP (G1 (N-CGMP)) or supplemented with CGMP in combination with LNAA (G2 (N-CGMP-LNAA)) had significantly lower Phe in plasma and in the brain compared to mice fed only casein (G3 (N)). Extra LNAA (Tyr, Trp and Leu) to CGMP did not have any significant impact on Phe levels in the plasma and brain, but an increase in serotonin was measured in the brain of G2 mice compared to G1. Study 2: PKU mice fed with mixture of CGMP and EAA as supplement to LP diet (G4 (CGMP-EAA-LP)) demonstrated lower plasma-Phe levels but similar brain- Phe levels and growth as mice fed on an almost identical combination of FSAA (G5 (FSAA-LP)). CONCLUSION: CGMP can be a relevant supplement for the treatment of PKU.


Assuntos
Aminoácidos/uso terapêutico , Caseínas/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Fenilcetonúrias/dietoterapia , Aminoácidos/sangue , Aminoácidos/síntese química , Animais , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina/análise , Fenilalanina/sangue , Fenilalanina Hidroxilase/deficiência , Fenilalanina Hidroxilase/genética , Serotonina/sangue , Tirosina/sangue
13.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055113

RESUMO

Methionine (Met) is considered the most toxic amino acid in mammals. Here, we investigated biochemical and behavioral impacts of ad libitum one-week feeding of high-Met diets on mice. Adult male mice were fed the standard rodent diet that contained 0.44% Met (1×) or a diet containing 16 graded Met doses (1.2×-13×). High-Met diets for one-week induced a dose-dependent decrease in body weight and an increase in serum Met levels with a 2.55 mM peak (versus basal 53 µM) on the 12×Met diet. Total homocysteine (Hcy) levels were also upregulated while concentrations of other amino acids were almost maintained in serum. Similarly, levels of Met and Hcy (but not the other amino acids) were highly elevated in the cerebrospinal fluids of mice on the 10×Met diet; the Met levels were much higher than Hcy and the others. In a series of behavioral tests, mice on the 10×Met diet displayed increased anxiety and decreased traveled distances in an open-field test, increased activity to escape from water soaking and tail hanging, and normal learning/memory activity in a Y-maze test, which were reflections of negative/positive symptoms and normal cognitive function, respectively. These results indicate that high-Met ad libitum feeding even for a week can induce bipolar disorder-like disease models in mice.


Assuntos
Transtorno Bipolar/psicologia , Homocisteína/sangue , Metionina/efeitos adversos , Aminoácidos/sangue , Aminoácidos/líquido cefalorraquidiano , Animais , Transtorno Bipolar/sangue , Transtorno Bipolar/líquido cefalorraquidiano , Transtorno Bipolar/induzido quimicamente , Modelos Animais de Doenças , Esquema de Medicação , Homocisteína/líquido cefalorraquidiano , Masculino , Metionina/sangue , Metionina/líquido cefalorraquidiano , Camundongos , Teste de Campo Aberto/efeitos dos fármacos , Regulação para Cima
14.
Sci Rep ; 12(1): 1008, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046467

RESUMO

Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.


Assuntos
Aminoácidos/sangue , Ritmo Circadiano/fisiologia , Neoplasias Mamárias Experimentais/fisiopatologia , Neoplasias de Mama Triplo Negativas/fisiopatologia , Aminoácidos/metabolismo , Animais , Neoplasias da Mama/fisiopatologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Transplante de Neoplasias , Projetos Piloto
15.
J Clin Endocrinol Metab ; 107(1): e315-e327, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390344

RESUMO

CONTEXT: Maternal prepregnancy body mass index (BMI) has a strong influence on gestational metabolism, but detailed metabolic alterations are unknown. OBJECTIVE: First, to examine the associations of maternal prepregnancy BMI with maternal early-pregnancy metabolite alterations. Second, to identify an early-pregnancy metabolite profile associated with birthweight in women with a higher prepregnancy BMI that improved prediction of birthweight compared to glucose and lipid concentrations. DESIGN, SETTING, AND PARTICIPANTS: Prepregnancy BMI was obtained in a subgroup of 682 Dutch pregnant women from the Generation R prospective cohort study. MAIN OUTCOME MEASURES: Maternal nonfasting targeted amino acids, nonesterified fatty acid, phospholipid, and carnitine concentrations measured in blood serum at mean gestational age of 12.8 weeks. Birthweight was obtained from medical records. RESULTS: A higher prepregnancy BMI was associated with 72 altered amino acids, nonesterified fatty acid, phospholipid and carnitine concentrations, and 6 metabolite ratios reflecting Krebs cycle, inflammatory, oxidative stress, and lipid metabolic processes (P-values < 0.05). Using penalized regression models, a metabolite profile was selected including 15 metabolites and 4 metabolite ratios based on its association with birthweight in addition to prepregnancy BMI. The adjusted R2 of birthweight was 6.1% for prepregnancy BMI alone, 6.2% after addition of glucose and lipid concentrations, and 12.9% after addition of the metabolite profile. CONCLUSIONS: A higher maternal prepregnancy BMI was associated with altered maternal early-pregnancy amino acids, nonesterified fatty acids, phospholipids, and carnitines. Using these metabolites, we identified a maternal metabolite profile that improved prediction of birthweight in women with a higher prepregnancy BMI compared to glucose and lipid concentrations.


Assuntos
Peso ao Nascer , Índice de Massa Corporal , Obesidade Materna/metabolismo , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Carnitina/sangue , Carnitina/metabolismo , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Feminino , Humanos , Idade Materna , Metabolômica , Obesidade Materna/sangue , Obesidade Materna/diagnóstico , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Gravidez , Segundo Trimestre da Gravidez/sangue , Segundo Trimestre da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/sangue , Terceiro Trimestre da Gravidez/metabolismo , Estudos Prospectivos , Fatores de Risco
16.
J Hepatol ; 76(2): 283-293, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34627976

RESUMO

BACKGROUND & AIMS: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. METHODS: In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. RESULTS: PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. CONCLUSIONS: Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. LAY SUMMARY: There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males.


Assuntos
Exposição Ambiental/efeitos adversos , Metabolismo dos Lipídeos/fisiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Adulto , Aminoácidos/análise , Aminoácidos/sangue , Animais , Estudos de Coortes , Modelos Animais de Doenças , Exposição Ambiental/estatística & dados numéricos , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Metabolismo dos Lipídeos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo
18.
Microbiol Spectr ; 9(3): e0033821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878333

RESUMO

The heterogeneity in severity and outcome of COVID-19 cases points out the urgent need for early molecular characterization of patients followed by risk-stratified care. The main objective of this study was to evaluate the fluctuations of serum metabolomic profiles of COVID-19 patients with severe illness during the different disease stages in a longitudinal manner. We demonstrate a distinct metabolomic signature in serum samples of 32 hospitalized patients at the acute phase compared to the recovery period, suggesting the tryptophan (tryptophan, kynurenine, and 3-hydroxy-DL-kynurenine) and arginine (citrulline and ornithine) metabolism as contributing pathways in the immune response to SARS-CoV-2 with a potential link to the clinical severity of the disease. In addition, we suggest that glutamine deprivation may further result in inhibited M2 macrophage polarization as a complementary process, and highlight the contribution of phenylalanine and tyrosine in the molecular mechanisms underlying the severe course of the infection. In conclusion, our results provide several functional metabolic markers for disease progression and severe outcome with potential clinical application. IMPORTANCE Although the host defense mechanisms against SARS-CoV-2 infection are still poorly described, they are of central importance in shaping the course of the disease and the possible outcome. Metabolomic profiling may complement the lacking knowledge of the molecular mechanisms underlying clinical manifestations and pathogenesis of COVID-19. Moreover, early identification of metabolomics-based biomarker signatures is proved to serve as an effective approach for the prediction of disease outcome. Here we provide the list of metabolites describing the severe, acute phase of the infection and bring the evidence of crucial metabolic pathways linked to aggressive immune responses. Finally, we suggest metabolomic phenotyping as a promising method for developing personalized care strategies in COVID-19 patients.


Assuntos
Aminoácidos/metabolismo , COVID-19/metabolismo , Hospitais , Metaboloma , Índice de Gravidade de Doença , Aminoácidos/sangue , Biomarcadores/sangue , Interações entre Hospedeiro e Microrganismos , Humanos , Cinurenina/análogos & derivados , Metabolômica , SARS-CoV-2
19.
Front Endocrinol (Lausanne) ; 12: 763538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858335

RESUMO

Background: This study aimed to explore the association between serum amino acids (AAs) levels and bone mineral density (BMD). Methods: We performed a two-sample Mendelian randomization (MR) analysis to analyze the associations between the levels of eight AAs and BMD values by using summary-level genome-wide association study (GWAS) data. We applied the MR Steiger filtering method and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test to check for and remove single nucleotide polymorphisms (SNPs) that were horizontally pleiotropic. The associations were estimated with the inverse variance weighted (IVW), MR-Egger, weighted median and MR Robust Adjusted Profile Score (MR.RAPS) methods. Results: Our study found that genetically increased isoleucine (Ile) [IVW: effect = 0.1601, 95% confidence interval (CI) = 0.0604 ~ 0.2597, p = 0.0016] and valine (Val) levels (IVW: effect = 0.0953, 95% CI = 0.0251 ~ 0.1655, p = 0.0078) were positively associated with total body BMD (TB-BMD). The results also revealed that genetically increased tyrosine (Tyr) levels were negatively associated with TB-BMD (IVW: effect = -0.1091, 95% CI = -0.1863 ~ -0.0320, p = 0.0055). Conclusions: In this study, associations between serum AA levels and BMD were established. These findings underscore the important role that serum AAs play in the development of osteoporosis and provide evidence that osteoporosis can be prevented and treated by the intake of certain AAs.


Assuntos
Aminoácidos/sangue , Aminoácidos/genética , Densidade Óssea/fisiologia , Estudo de Associação Genômica Ampla/métodos , Análise da Randomização Mendeliana/métodos , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/sangue , Osteoporose/diagnóstico , Osteoporose/genética
20.
Aging (Albany NY) ; 13(23): 24963-24988, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851303

RESUMO

Metallothionein (MT) is a family of low molecular weight, cysteine-rich proteins that regulate zinc homeostasis and have potential protective effects against oxidative stress and toxic metals. MT1 and MT2 gene knockout (MTKO) mice show shorter lifespans than wild-type (WT) mice. In this study, we aimed to investigate how MT gene deficiency accelerates aging. We performed comparative metabolomic analyses of plasma between MTKO and WT male mice at middle age (50-week-old) and advanced age (100-week-old) using liquid chromatography with time-of-flight mass spectrometry (LC-TOF-MS). The concentration of N6,N6,N6-trimethyl-L-lysine (TML), which is a metabolic intermediate in carnitine biosynthesis, was consistently higher in the plasma of MTKO mice compared to that of WT mice at middle and advanced age. Quantitative reverse transcription PCR (RT-PCR) analysis revealed remarkably lower mRNA levels of Tmlhe, which encodes TML dioxygenase, in the liver and kidney of male MTKO mice compared to that of WT mice. L-carnitine is essential for ß-oxidation of long-chain fatty acids in mitochondria, the activity of which is closely related to aging. Our results suggest that reduced carnitine biosynthesis capacity in MTKO mice compared to WT mice led to metabolic disorders of fatty acids in mitochondria in MTKO mice, which may have caused shortened lifespans.


Assuntos
Envelhecimento/metabolismo , Carnitina/biossíntese , Metabolômica , Metalotioneína/metabolismo , Envelhecimento/sangue , Aminoácidos/sangue , Aminoácidos/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Bilirrubina/sangue , Bilirrubina/metabolismo , Metabolismo dos Carboidratos , Carnitina/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Masculino , Metalotioneína/genética , Camundongos , Camundongos Knockout , Nucleotídeos/sangue , Nucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...